The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  0  X X^2+2  X  0  X X^2+2  X  0  X X^2+2  X  X  X  0  X X^2+2  X  X  X  X  1  1  1  1  1  1  X  X  X  X  1  1  2 X^2  2 X^2  X  X  X  X  2 X^2  2 X^2  1  1  1  1  X  X  X  X  X  X  X  1  X
 0  X X^2+2 X^2+X  0 X^2+X X^2+2 X+2  0 X^2+X X^2+2 X+2  0 X^2+X X^2+2  X  2 X^2+X+2 X^2  X  2 X^2+X+2 X^2 X+2  2 X^2+X+2 X^2  X  2 X^2+X+2 X^2 X+2 X^2+X  X X+2  X X^2+X  X X+2  X X^2+X  X X+2  X  0 X^2+2 X^2+X  X X+2  X  0 X^2+2  0 X^2+2  0  2 X^2+2 X^2+2 X^2+2 X^2+2 X^2+X+2  X X^2+X+2  X  0  2  X  X  X  X X^2+X+2  X X^2+X+2  X  X  X  X  X  0  2  0  2 X^2 X^2 X^2+2  2 X^2  0  2 X^2 X^2+2
 0  0  2  0  0  2  2  2  2  0  0  2  2  2  0  0  2  2  2  2  0  0  0  0  2  2  2  2  0  0  0  0  0  0  2  2  0  0  2  2  2  2  0  0  2  2  2  2  0  0  0  2  2  0  0  2  0  2  0  2  2  0  2  0  0  2  2  2  0  0  0  2  0  2  2  2  0  0  2  0  2  0  2  2  0  0  0  0  2  2  0
 0  0  0  2  2  2  2  0  2  0  0  2  0  0  2  2  0  0  2  2  2  2  0  0  2  2  0  0  0  0  2  2  0  2  2  0  2  0  0  2  2  0  0  2  2  2  0  2  2  0  2  0  0  2  0  0  2  2  0  0  0  0  2  2  2  2  0  2  2  0  2  0  0  2  2  0  0  2  2  2  0  0  0  2  0  2  2  0  0  0  0

generates a code of length 91 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 89.

Homogenous weight enumerator: w(x)=1x^0+60x^89+23x^90+352x^91+24x^92+32x^93+8x^94+7x^96+4x^105+1x^122

The gray image is a code over GF(2) with n=728, k=9 and d=356.
This code was found by Heurico 1.16 in 0.875 seconds.